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A functional data structure is a data structure that is suitable for 

implementation in a functional programming language, or for coding in 

an ordinary language like C or Java using a functional style. Functional 

data structures are closely related to persistent data structures and 

immutable data structures.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Stacks — a simple example



Stacks

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A functional data structure 
for stacks in Haskell

data Stack = Empty | Push Int Stack 

empty = Empty
push x s  = Push x s
top (Push x s) = x
pop (Push x s) = s

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



The „functional“ push operationFunctional Data Structures 40-5

s′ = push(4, s)
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FIGURE 40.3: The push operation.

s′′ = pop(s′)
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FIGURE 40.4: The pop operation.

Next, consider the pop operation, which simply returns the next pointer of the current
node without changing the current node in any way. For example, Figure 40.4 illustrates
the result of popping the stack s′ to get the stack s′′ (which shares its entire representation
with the original stack s). Notice that, after popping s′, the node containing 4 may or may
not be garbage. It depends on whether any part of the program is still using the s′ stack.
If not, then automatic garbage collection will eventually deallocate that node.
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Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



The „functional“ pop operation
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Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A functional data structure 
for stacks in Java

public class Stack {
  private int elem;
  private Stack next;
  public static final Stack empty = null;
  public static Stack push(int x,Stack s) {
    return new Stack(x,s);
  }
  public static int top(Stack s) { return s.elem; }
  public static Stack pop(Stack s) { return s.next; }
  private Stack(int elem, Stack next) {
    this.elem = elem;
    this.next = next;
  }
}

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A non-functional data structure 
for stacks in Java

public class Stack {
    private class Node {
        private int elem;
        private Node next;
    }
    private Node first;
    public Stack() {} // "empty"
    public void push(int x) {
        Node n = new Node();
        n.elem = x;
        n.next = first;
        first = n;
    }
    public int top() { return first.elem; }
    public void pop() { first = first.next; }
}



Terminology  
& 

characteristics



A functional data structure is a data structure that is suitable for 

implementation in a functional programming language, or for coding in 

an ordinary language like C or Java using a functional style. Functional 

data structures are closely related to persistent data structures and 

immutable data structures.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



persistent immutable

functional



• The term persistent data structures refers to the general 
class of data structures in which an update does not destroy 
the previous version of the data structure, but rather creates 
a new version that co-exists with the previous version. See 
the handbook (Chapter 31) for more details about persistent 
data structures.  

• The term immutable data structures emphasizes a 
particular implementation technique for achieving 
persistence, in which memory devoted to a particular version 
of the data structure, once initialized, is never altered.  

• The term functional data structures emphasizes the 
language or coding style in which persistent data structures 
are implemented. Functional data structures are always 
immutable, except in a technical sense discussed (related to 
laziness and memoization). 

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Functional programming specifics 
related to data structures

• Immutability as opposed to imperative variables 

• Recursion as opposed to control flow with loops 

• Garbage collection as opposed to malloc/dealloc 

• Pattern matching

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Perceived advantages of 
functional data structures

• Fewer bugs as data cannot change suddenly 

• Increased sharing as defensive cloning is not needed 

• Decreased synchronization as a consequence

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Sets — another example 



Sets
data Set e s = Set {
  empty :: s e,
  insert :: e -> s e -> s e,
  search :: e -> s e -> Bool
}

Let’s look at different 
implementations of this signature!

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A naive, equality- and list-based 
implementation of sets in Haskell
set :: Eq e => Set e []
set = Set {
  empty = [],
  insert = \e s ->
    case s of
      [] -> [e]
      s'@(e':s'') ->
        if e==e'
          then s'
          else e':insert set e s'',
  search = \e s ->
    case s of
      [] -> False
      (e':s') -> e==e' || search set e s'
}

The time complexity is 
embarrassing: insertion and 

search takes time proportional 
to the size of the set.



Sets based on binary search trees  
in Haskell

data BST e = Empty | Node (BST e) e (BST e)

set :: Ord e => Set e BST
set = Set {

  empty = Empty,

  insert = ...,

  search = ...

}

That is, we go for 
another implementation 
with, hopefully, better 

time complexity.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Sets based on binary search trees  
in Haskell

  search = \e s ->
    case s of
      Empty -> False
      (Node s1 e' s2) -> 
        if e<e'
          then search set e s1
          else if e>e'
            then search set e s2
            else True

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

The running time of search is proportional 
to the length of the search path — just like 

in a non-persistent implementation.



Sets based on binary search trees  
in Haskell

  insert = \e s ->
    case s of
      Empty -> Node Empty e Empty
      (Node s1 e' s2) ->
        if e<e'
          then Node (insert set e s1) e' s2
          else if e>e'
            then Node s1 e' (insert set e s2)
            else Node s1 e' s2,

The running time of insert is 
also proportional to the 

length of the search path.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Operations of functional data structures involve 
path copying40-8 Handbook of Data Structures and Applications
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FIGURE 40.7: The insert operation.

Many of the standard heap data structures can easily be adapted to a functional setting,
including binomial queues [7, 15] and leftist heaps [18, 24]. In this section, we describe a
simple, yet interesting, design known as skew heaps [32]. (Non-persistent skew heaps are

A skew heap is a heap-ordered binary tree. Each node contains a single element, and the
nodes are ordered such that the element at each node is no larger than the elements at the
node’s children. Because of this ordering, the minimum element in a tree is always at the
root. Therefore, the findMin operation simply returns the element at the root. The insert
and deleteMin operations are defined in terms of merge: insert creates a new node and
merges it with the existing heap, and deleteMin discards the root and merges its children.

The interesting operation is merge. Assuming both heaps are non-empty, merge compares
their roots. The smaller root (that is, the root with the smaller element) becomes the new
overall root and its children are swapped. Then the larger root is merged with the new left
child of the smaller root (which used to be the right child). The net effect of a merge is
to interleave the rightmost paths of the two trees in sorted order, swapping the children of
nodes along the way. Notice how the nodes on
the rightmost paths of the arguments end up on the leftmost path of the result. A Haskell

Skew heaps are not balanced, and individual operations can take linear time in the worst

elements

5, 6, 4, 6, 3, 6, 2, 6, 1, 6

© 2005 by Chapman & Hall/CRC

This process is illustrated in Figure 40.8.

implementation of skew heaps incorporating path copying is shown in Figure 40.9. A naive
Java implementation is shown in Figure 40.10.

case. For example, Figure 40.11 shows an unbalanced shew heap generated by inserting the

described in detail in Chapter 6.)
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Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

For example:



Benchmark results

benchmarking NaiveSet/insert 
mean: 5.673453 ms, lb 5.610866 ms, ub 5.836548 ms, ci 0.950 
std dev: 480.9444 us, lb 228.4352 us, ub 986.8636 us, ci 0.950 
found 16 outliers among 100 samples (16.0%) 
  4 (4.0%) high mild 
  12 (12.0%) high severe 
variance introduced by outliers: 72.809% 
variance is severely inflated by outliers

benchmarking BinarySearchTree/insert 
mean: 241.3734 us, lb 240.6849 us, ub 242.4783 us, ci 0.950 
std dev: 4.375792 us, lb 3.020795 us, ub 7.339799 us, ci 0.950 
found 35 outliers among 100 samples (35.0%) 
  15 (15.0%) low severe 
  5 (5.0%) low mild 
  2 (2.0%) high mild 
  13 (13.0%) high severe 
variance introduced by outliers: 11.315% 
variance is moderately inflated by outliers

Insert is (much) 
faster with binary 

search trees.

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set


Benchmark results

benchmarking NaiveSet/search 
mean: 38.35384 us, lb 36.66107 us, ub 40.54014 us, ci 0.950 
std dev: 9.812249 us, lb 8.019951 us, ub 11.71828 us, ci 0.950 
found 10 outliers among 100 samples (10.0%) 
  10 (10.0%) high mild 
variance introduced by outliers: 96.775% 
variance is severely inflated by outliers

benchmarking BinarySearchTree/search 
mean: 1.606348 us, lb 1.576601 us, ub 1.645087 us, ci 0.950 
std dev: 172.8071 ns, lb 139.6882 ns, ub 203.6180 ns, ci 0.950 
found 16 outliers among 100 samples (16.0%) 
  15 (15.0%) high severe 
variance introduced by outliers: 82.070% 
variance is severely inflated by outliers

Search is (much) 
faster with binary 

search trees.

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set


Discussion of binary search trees 
• „Of course“, a balanced variation would be needed: 

• AVL trees 

• Red-black trees 

• 2-3 trees 

• Weight-balanced trees 

• Path copying still applies 

• Time complexity Ok 

• Space complexity Ok because of garbage collection



Priority queues — a tougher example



Priority queues

Functional Data Structures 40-7

public class Tree {
public static final Tree empty = null;
public static Tree insert(int x,Tree t) {
if (t == null) return new Tree(null,x,null);
else if (x < t.element)

return new Tree(insert(x,t.left),t.element,t.right);
else if (x > t.element)

return new Tree(t.left,t.element,insert(x,t.right));
else return t;

}
public static boolean search(int x,Tree t) {
if (t == null) return false;
else if (x < t.element) return search(x,t.left);
else if (x > t.element) return search(x,t.right);
else return true;

}

private int element;
private Tree left,right;
private Tree(Tree left,int element,Tree right) {
this.left = left;
this.element = element;
this.right = right;

}
}

FIGURE 40.6: Binary search trees in Java.

Of course, the binary search trees described above suffer from the same limitations as
ordinary unbalanced binary search trees, namely a linear time complexity in the worst case.
Whether the implementation is functional or not as no effect in this regard. However,
we can easily apply the ideas of path copying to most kinds of balanced binary search

weight-balanced trees [2]. Such a functional implementation retains the logarithmic time
complexity of the underlying design, but makes it persistent.

Path copying is sufficient for implementing many tree-based data structures besides binary

40.4 Skew Heaps: Amortization and Lazy Evaluation

• empty: a constant representing the empty heap.
• insert(x,h): insert the element x into the heap h and return the new heap.
• findMin(h): return the minimum element of h.
• deleteMin(h): delete the minimum element of h and return the new heap.
• merge(h1,h2): combine the heaps h1 and h2 into a single heap and return the

new heap.

© 2005 by Chapman & Hall/CRC

trees (see Chapter 10), such as AVL trees [17, 29], red-black trees [25], 2-3 trees [30], and

search trees, including binomial queues [7, 15] (Chapter 7), leftist heaps [18, 24] (Chapter 5),

Next, we turn to priority queues, or heaps, supporting the following primitives:

Patricia tries [26] (Chapter 28), and many others.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Heaps:  
an efficient implementation of priority queues 

• A tree structure with keys at the nodes. 

• Max-heap: maximum key value always at the root. 

• Min-heap: minimum key value always at the root. 

• Note: 

• No particular order on the children. 

• Heaps are essentially partially ordered trees.



Example of a (complete) binary max-heap with 
node keys being integers from 1 to 100

Source: http://en.wikipedia.org/wiki/Heap_(data_structure)#mediaviewer/File:Max-Heap.svg 
!

A complete binary tree of size N has height O(log N).

http://en.wikipedia.org/wiki/Heap_(data_structure)#mediaviewer/File:Max-Heap.svg


Signature of heaps

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.

data Heap e t = Heap {
  empty :: t e,
  insert :: e -> t e -> t e,
  findMin :: t e -> Maybe e,
  deleteMin :: t e -> Maybe (t e),
  merge :: t e -> t e -> t e
}



A tree-based representation type 
for heaps

data Tree e
  = Empty
  | Node e (Tree e) (Tree e)
    deriving (Eq, Show)

leaf e = Node e Empty Empty

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



heap = Heap {
  empty = Empty,
  insert = \x t -> merge' (Node x Empty Empty) t,
  findMin = \t -> case t of
    Empty -> Nothing
    (Node x _ _) -> Just x,
  deleteMin = \t -> case t of
    Empty -> Nothing
    (Node _ l r) -> Just (merge' l r),
  merge = \l r -> case (l, r) of
    (Empty, t) -> t
    (t, Empty) -> t
    (t1@(Node x1 l1 r1), t2@(Node x2 l2 r2)) ->
      if x1 <= x2
        then Node x1 (merge' l1 r1) t2
        else Node x2 t1 (merge' l2 r2)
}
  where merge' = merge heap

This is not yet „optimal“.



heap = Heap {
  empty = Empty,
  insert = \x t -> merge' (Node x Empty Empty) t,
  findMin = \t -> case t of
    Empty -> Nothing
    (Node x _ _) -> Just x,
  deleteMin = \t -> case t of
    Empty -> Nothing
    (Node _ l r) -> Just (merge' r l),
  merge = \l r -> case (l, r) of
    (Empty, t) -> t
    (t, Empty) -> t
    (t1@(Node x1 l1 r1), t2@(Node x2 l2 r2)) ->
      if x1 <= x2
        then Node x1 (merge' t2 r1) l1
        else Node x2 (merge' t1 r2) l2
}
  where merge' = merge heap

Let’s make our heaps self-adjusting.!
We swap arguments of merge.!

These are so-called skew heaps.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Merging two skew heaps

Merge interleaves the rightmost 
paths of the two trees in sorted order 
(on the left path), swapping the 
children of nodes along the way.	

Without swapping, the rightmost 
path would get „too“ long.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



public class Skew {
    public static final Skew empty = null;
    public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); } 
    public static int findMin(Skew s) { return s.elem; }
    public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }
    public static Skew merge(Skew s,Skew t) { 
        if (t == null) return s;
        else if (s == null) return t;
        else if (s.elem < t.elem)
            return new Skew(s.elem,merge(t,s.right),s.left);
        else
            return new Skew(t.elem,merge(s,t.right),t.left); 
    }
    private int elem;
    private Skew left,right;
    private Skew(int elem, Skew left, Skew right) {
        this.elem = elem; this.left = left; this.right = right;
    } 
}

A functional data structure 
for skew heaps in Java

We will need to revise this 
implementation.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



40-10 Handbook of Data Structures and Applications

public class Skew {
public static final Skew empty = null;
public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
public static int findMin(Skew s) { return s.element; }
public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }

public static Skew merge(Skew s,Skew t) {
if (t == null) return s;
else if (s == null) return t;
else if (s.element < t.element)
return new Skew(s.element,merge(t,s.right),s.left);

else
return new Skew(t.element,merge(s,t.right),t.left);

}

private int element;
private Skew left,right;
private Skew(int element, Skew left, Skew right) {
this.element = element;
this.left = left;
this.right = right;

}
}

FIGURE 40.10: First attempt at skew heaps in Java
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FIGURE 40.11: An unbalanced skew heap.

we do not observe linear behavior. Instead, the operations appear to retain their logarith-
mic amortized bounds, even under persistent usage. This pleasant result is a consequence
of a fortuitous interaction between path copying and a property of the Haskell language
called lazy evaluation. (Many other functional programming languages also support lazy
evaluation).

© 2005 by Chapman & Hall/CRC

However, if we repeat those experiments on the Haskell implementation from Figure 40.9,

[5, 6, 4, 6, 3, 6, 2, 6, 1, 6]

The shown tree is an 
unbalanced skew heap 

generated by inserting the 
listed numbers.

Skew heaps are not 
balanced, and individual 
operations can take linear 

time in the worst case.
Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Complexity of operation sequences

40-10 Handbook of Data Structures and Applications

public class Skew {
public static final Skew empty = null;
public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
public static int findMin(Skew s) { return s.element; }
public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }

public static Skew merge(Skew s,Skew t) {
if (t == null) return s;
else if (s == null) return t;
else if (s.element < t.element)
return new Skew(s.element,merge(t,s.right),s.left);

else
return new Skew(t.element,merge(s,t.right),t.left);

}

private int element;
private Skew left,right;
private Skew(int element, Skew left, Skew right) {
this.element = element;
this.left = left;
this.right = right;

}
}

FIGURE 40.10: First attempt at skew heaps in Java

1

6 2

6 3

6 4

6 5

6

FIGURE 40.11: An unbalanced skew heap.

we do not observe linear behavior. Instead, the operations appear to retain their logarith-
mic amortized bounds, even under persistent usage. This pleasant result is a consequence
of a fortuitous interaction between path copying and a property of the Haskell language
called lazy evaluation. (Many other functional programming languages also support lazy
evaluation).

© 2005 by Chapman & Hall/CRC

However, if we repeat those experiments on the Haskell implementation from Figure 40.9,

Inserting a new element such as 7 into this 
unbalanced skew heap would take linear time. 
However, in spite of the fact that any one 
operation can be inefficient, the way that 
children are regularly swapped keeps the 
operations efficient „in average“.  Insert, 
deleteMin, and merge run in logarithmic 
(amortized) time.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Amortization

Available online: https://www.cs.cmu.edu/~sleator/papers/adjusting-heaps.pdf

SIAM J.  COMPUT. 
Vol. 15, No. 1, February 1986 

@ 1986 Society for Industrial and Applied Mathematics 
004 

SELF-ADJUSTING HEAPS* 

DANIEL DOMINIC SLEATORt AND ROBERT ENDRE TARJANt 

Abstract. In this paper we explore two themes in data structure design: amortized computational 
complexity and self-adjustment. We are motivated by the following observations. In most applications of 
data structures, we wish to perform not just a single operation but a sequence of operations, possibly having 
correlated behavior. By averaging the running time per operation over a worst-case sequence of operations, 
we can sometimes obtain an overall time bound much smaller than the worst-case time per operation 
multiplied by the number of operations. We call this kind of averaging amortization. 

Standard kinds of data structures, such as the many varieties of balanced trees, are specifically designed 
so that the worst-case time per operation is small. Such efficiency is achieved by imposing an explicit 
structural constraint that must be maintained during updates, at a cost of both running time and storage 
space. However, if amortized running time is the complexity measure of interest, we can guarantee efficiency 
without maintaining a structural constraint. Instead, during each access or update operation we adjust the 
data structure in a simple, uniform way. We call such a data structure self-adjusting. 

In this paper we develop the skew heap, a self-adjusting form of heap related to the leftist heaps of 
Crane and Knuth. (What we mean by a heap has also been called a “priority queue” or a “mergeable 
heap”.) Skew heaps use less space than leftist heaps and similar worst-case-efficient data structures and are 
competitive in running time, both in theory and in practice, with worst-case structures. They are also easier 
to implement. We derive an information-theoretic lower bound showing that skew heaps have minimum 
possible amortized running time, to within a constant factor, on any sequence of certain heap operations. 

Key words. Self-organizing data structure, amortized complexity, heap, priority queue 

1. Introduction. Many kinds of data structures have been designed with the aim 
of making the worst-case running time per operation as small as possible. However, 
in typical applications of data structures, it is not a single operation that is performed 
but rather a sequence of operations, and the relevant complexity measure is not the 
time taken by one operation but the total time of a sequence. If we average the time 
per operation over a worst-case sequence, we may be able to obtain a time per operation 
much smaller than the worst-case time. We shall call this kind of averaging over time 
amortization. A classical example of amortized efficiency is the compressed tree data 
structure for disjoint set union [ 151, which has a worst-case time per operation of 
O(1og n )  but an amortized time of O(a(rn, n ) )  [13], where n is the number of elements 
in the sets, rn is the number of operations, and a is an inverse of Ackerman’s function, 
which grows very slowly. 

Data structures efficient in the worst case typically obtain their efficiency from an 
explicit structural constraint, such as the balance condition found in each of the many 
kinds of balanced trees. Maintaining such a structural constraint consumes both running 
time and storage space, and tends to produce complicated updating algorithms with 
many cases. Implementing such data structures can be tedious. 

If we are content with a data structure that is efficient in only an amortized sense, 
there is another way to obtain efficiency. Instead of imposing any explicit structural 
constraint, we allow the data structure to be in an arbitrary state, but we design the 
access and update algorithms to adjust the structure in a simple, uniform way, so that 
the efficiency of future operations is improved. We call such a data structure sey- 
adjusting. 

* Received by the editors October 12, 1983, and in revised form September 15, 1984. 
t AT&T Bell Laboratories, Murray Hill, New Jersey 07974. 
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Persistence may break amortized bounds.

40-10 Handbook of Data Structures and Applications

public class Skew {
public static final Skew empty = null;
public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
public static int findMin(Skew s) { return s.element; }
public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }

public static Skew merge(Skew s,Skew t) {
if (t == null) return s;
else if (s == null) return t;
else if (s.element < t.element)
return new Skew(s.element,merge(t,s.right),s.left);

else
return new Skew(t.element,merge(s,t.right),t.left);

}

private int element;
private Skew left,right;
private Skew(int element, Skew left, Skew right) {
this.element = element;
this.left = left;
this.right = right;

}
}

FIGURE 40.10: First attempt at skew heaps in Java
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FIGURE 40.11: An unbalanced skew heap.

we do not observe linear behavior. Instead, the operations appear to retain their logarith-
mic amortized bounds, even under persistent usage. This pleasant result is a consequence
of a fortuitous interaction between path copying and a property of the Haskell language
called lazy evaluation. (Many other functional programming languages also support lazy
evaluation).

© 2005 by Chapman & Hall/CRC

However, if we repeat those experiments on the Haskell implementation from Figure 40.9,

However, naively incorporating path 
copying causes the logarithmic 
amortized bounds to degrade to the 
linear worst-case bounds.	

!

To see this, consider repeated insertion 
of large elements into a tree. Each 
insertion  could be applied to the 
original tree. Thus, each insertion 
would have linear costs resulting also 
in average linear costs.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Impact of laziness

40-10 Handbook of Data Structures and Applications

public class Skew {
public static final Skew empty = null;
public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
public static int findMin(Skew s) { return s.element; }
public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }

public static Skew merge(Skew s,Skew t) {
if (t == null) return s;
else if (s == null) return t;
else if (s.element < t.element)
return new Skew(s.element,merge(t,s.right),s.left);

else
return new Skew(t.element,merge(s,t.right),t.left);

}

private int element;
private Skew left,right;
private Skew(int element, Skew left, Skew right) {
this.element = element;
this.left = left;
this.right = right;

}
}

FIGURE 40.10: First attempt at skew heaps in Java
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FIGURE 40.11: An unbalanced skew heap.

we do not observe linear behavior. Instead, the operations appear to retain their logarith-
mic amortized bounds, even under persistent usage. This pleasant result is a consequence
of a fortuitous interaction between path copying and a property of the Haskell language
called lazy evaluation. (Many other functional programming languages also support lazy
evaluation).

© 2005 by Chapman & Hall/CRC

However, if we repeat those experiments on the Haskell implementation from Figure 40.9,

If we benchmark the Haskell 
implementation, we do not observe linear 
behavior though! Instead, the operations 
appear to retain their logarithmic 
amortized bounds, even under persistent 
usage. This pleasant result is a 
consequence of a fortuitous interaction 
between path copying and lazy 
evaluation.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Pending merge
findMin

Under lazy evaluation, operations such as merge are not actually executed until their 
results are needed. Instead, a new kind of node that we might call a pending merge 
(see the diamonds) is automatically created. The pending merge lays dormant until 
some other operation such as findMin needs to know the result. Then and only then is 
the pending merge executed. The node representing the pending merge is overwritten 
with the result so that it cannot be executed twice. (This is benign mutation.)
Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Functional Data Structures 40-13
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FIGURE 40.13: Executing a pending merge.
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FIGURE 40.14: A sequence of operations on skew heaps.
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A sequence of 
operations

Pending merges do not affect the end 
results of those steps. After all the 
pending merges have been executed, the 
final tree is identical to the one 
produced by skew heaps without lazy 
evaluation. (Printing the tree would 
execute all pending nodes!) Some 
functional languages allow this kind of 
mutation, known as memoization, 
because it is invisible to the user, except 
in terms of efficiency.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



public class Skew {
    private int elem;
    private Skew left,right;
    private boolean pendingMerge;
    public static final Skew empty = null;
    public static Skew insert(int x,Skew s) {
        return merge(new Skew(x,null,null),s); 
    } 
    public static int findMin(Skew s) {
        executePendingMerge(s);
        return s.elem; 
    }
    public static Skew deleteMin(Skew s) {
        executePendingMerge(s);
        return merge(s.left,s.right);
    }
    public static Skew merge(Skew s,Skew t) {
        if (t == null) return s;
        else if (s == null) return t;
        else return new Skew(s,t); // create a pending merge
    }
    private Skew(int elem, Skew left, Skew right) { ... }
    private Skew(Skew left,Skew right) { ... } // create a pending merge
    private static void executePendingMerge(Skew s) { ... }
}

A Java 

implementation 

with pending 

merges

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



    private Skew(int elem, Skew left, Skew right) {
        this.elem = elem; 
        this.left = left; 
        this.right = right;
        pendingMerge = false;
    }
    private Skew(Skew left,Skew right) { // create a pending merge
        this.left = left; 
        this.right = right;
        pendingMerge = true;
    }
    private static void executePendingMerge(Skew s) {
        if (s != null && s.pendingMerge) {
            Skew s1 = s.left, s2 = s.right;
            executePendingMerge(s1);
            executePendingMerge(s2);
            if (s2.elem < s1.elem) { 
                Skew tmp = s1;
                s1 = s2; s2 = tmp; 
            } s.elem = s1.elem;
            s.left = merge(s2,s1.right);
            s.right = s1.left;
            s.pendingMerge = false;
        } 
    }

A Java 

implementation 

with pending 

merges

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Summary

• Functional DS are persistent and in „functional style“. 

• We looked at stacks, sets, and heaps. 

• Functional and „non“-f. DS can be equally efficient. 

• Lazy evaluation includes memoization. 

• Have a look at methods of amortized analysis!


