Functional gata structures

Ralt LAmmel
Software Languages Team
University of Koblenz-Landau

Important comment on sources: Most code, text, and illustrations
(modulo rephrasing or refactoring) have been extracted from the ,Handbook
of Data Structures and Applications®, Chapter 40 ,Functional Data Structures®
by Chris Okasaki. At the time of writing (these slides), the handbook is freely

available online: http://www.e-reading-lib. bookreader.ph
Handbook of Data Structures _and Applications.pdf

Further sources are cited on individual slides.


http://www.e-reading-lib.org/bookreader.php/138822/Mehta_-_Handbook_of_Data_Structures_and_Applications.pdf

Data structure

=
O/
. Qo
Headline % 2
S
A particular way of storing and organizing data in a computer //é/ ’>/®
O =
% %
Illustration =3
Z.
%

See linked lists as a simple example of an imperative data structure.

See immutable lists as a simple example of a functional data structure.

Resources

» Wikipedia
sameAs http://en.wikipedia.org/wiki/Data structure



A functional data structure 1s a data structure that 1s suitable for
implementation 1n a functional programming language, or for coding in
an ordinary language like C or Java using a functional style. Functional
data structures are closely related to persistent data structures and

immutable data structures.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Stacks — a simple example



Stacks

empty: a constant representing the empty stack.
push(z,s): push the element z onto the stack s and return the new stack.

top(s): return the top element of s.

pop(s): remove the top element of s and return the new stack.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A functional data structure
for stacks in Haskell

data Stack = Empty | Push Int Stack

empty = Empty
push X s = Push
top (Push x s)
pop (Push x s)

n X X

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



The ,functional” push operation

s’ = push(4, s)

(Before)

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



The ,functional® pop operation

s = pop(s’)
(Before)

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A functional data structure
for stacks In Java

public class Stack {
private int elem;
private Stack next;
public static final Stack empty = null;
public static Stack push(int x,Stack s) {
return new Stack(x,s);
I3

public static int top(Stack s) { return s.elem; }
public static Stack pop(Stack s) { return s.next; }
private Stack(int elem, Stack next) {

this.elem elem;

this.next next;

}
}

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A non-functional data structure
for stacks In Java

public class Stack {

private class Node {
private int elem;
private Node next;

s

private Node first;

public Stack() {} // "empty"

public void push(int x) A{

Node n = new Node();
n.elem = x;

n.next = first;
first = n;

}
public int top() { return first.elem; }

public void pop() { first = first.next; }



Terminology
&
characteristics



A functional data structure 1s a data structure that 1s suitable for
implementation 1n a functional programming language, or for coding in
an ordinary language like C or Java using a functional style. Functional
data structures are closely related to persistent data structures and

immutable data structures.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.






* The term persistent data structures refers to the general
class of data structures in which an update does not destroy
the previous version of the data structure, but rather creates
a new version that co-exists with the previous version. See
the handbook (Chapter 31) for more details about persistent
data structures.

* The term immutable data structures emphasizes a
particular implementation technique for achieving
persistence, in which memory devoted to a particular version
of the data structure, once initialized, is never altered.

* The term functional data structures emphasizes the
language or coding style in which persistent data structures
are implemented. Functional data structures are always
immutable, except in a technical sense discussed (related to
laziness and memoization).

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Functional programming specifics
related to data structures

 Immutability as opposed to imperative variables
* Recursion as opposed to control flow with loops
* Garbage collection as opposed to malloc/dealloc

- Pattern matching

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Perceived advantages of
functional data structures

* Fewer bugs as data cannot change suddenly
* Increased sharing as defensive cloning is not needed

* Decreased synchronization as a consequence

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Sets — another example



Sets

data Set e s = Set {
empty :: S e,
insert :: e -=> s e -> S e,
search :: e —=> s e —> Bool

}

L et’s look at different

implementations of this signature!

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A naive, equality- and list-based
implementation of sets in Haskell

set :: Eqg e => Set e []
set = Set {

empty = [], | "
insert = \e s —> The time complexity Is
case s oOf embarrassing: insertion and
[] — [e] search takes time proportional
s'@(e':s'') — to the size of the set.
1f e==e’
then s’

else e':insert set e s'',
search = \e s —>

case s of
[] -> False
(e':s') —> e==e' || search set e s'



Sets based on binary search trees
N Haskell

data BST e = Empty | Node (BST e) e (BST e)

set :: Ord e => Set e BST
set = Set {

empty = Empty,
| That is, we go for
insert = ..., another implementation

with, hopeftully, better
time complexity.

search

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Sets based on binary search trees

N Haskell
The running time of search is proportional
to the length of the search path — just like
search = \e s —> in a non-persistent implementation.
case s of

Empty —> False
(Node s1 e' s2) —
1T e<e’
then search set e sl
else 1f e>e'
then search set e s2
else True

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Sets based on binary search trees

N Haskell
The running time of insert is
also proportional to the
insert = \e s —> length of the search path.
case s of

Empty —> Node Empty e Empty
(Node s1 e' s2) —
1T e<e'
then Node (insert set e sl1) e' s2
else 1f e>e'
then Node s1 e' (insert set e s2)
else Node sl1 e' s2,

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Operations of functional data structures involve
path copying

For example: t' = insert(8,1)

(Before)

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Benchmark results

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

benchmarking NaiveSet/insert
mean: 5.673453 ms, b 5.610866 ms, ub 5.836548 ms, ci 0.950
std dev: 480.9444 us, 1lb 228.4352 us, ub 986.8636 us, ci 0.950
found 16 outliers among 100 samples (16.0%)

4 (4.0%) high mild

12 (12.0%) high severe
variance introduced by outliers: 72.809%
variance 1is severely inflated by outliers

Insert is (much)
faster with binary

benchmarking BinarySearchTree/insert search trees.
mean: 241.3734 us, lb 240.6849 us, ub 242.4783 us, ci 0.950
std dev: 4.375792 us, lb 3.020795 us, ub 7.339799 us, ci 0.950
found 35 outliers among 100 samples (35.0%)
15 (15.0%) low severe
5 (5.0%) low mild
2 (2.0%) high mild
13 (13.0%) high severe
variance introduced by outliers: 11.315%
variance is moderately inflated by outliers



https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

Benchmark results

https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

benchmarking NaiveSet/search
mean: 38.35384 us, lb 36.66107 us, ub 40.54014 us, ci 0.950
std dev: 9.812249 us, 1lb 8.019951 us, ub 11.71828 us, ci 0.950
found 10 outliers among 100 samples (10.0%)

10 (10.0%) high mild
variance introduced by outliers: 96.775%
variance is severely inflated by outliers

Search is (much)

faster with binary
search trees.

benchmarking BinarySearchTree/search
mean: 1.606348 us, 1lb 1.576601 us, ub 1.645087 us, ci 0.950
std dev: 172.8071 ns, 1lb 139.6882 ns, ub 203.6180 ns, ci 0.950
found 16 outliers among 100 samples (16.0%)

15 (15.0%) high severe
variance introduced by outliers: 82.070%
variance is severely inflated by outliers



https://github.com/101companies/101repo/tree/master/concepts/Functional_data_structure/Set

Discussion of binary search trees

* ,Of course”, a balanced variation would be needed:
* AVL trees
* Red-black trees
o 2-3trees
* Weight-balanced trees
* Path copying still applies
* Time complexity Ok

* Space complexity Ok because of garbage collection



Priority queues — a tougher example



Priority queues

e empty: a constant representing the empty heap.

e insert(x,h): insert the element x into the heap h and return the new heap.
e findMin(h): return the minimum element of hA.

e deleteMin(h): delete the minimum element of A and return the new heap.

e merge(hi,ho): combine the heaps h; and ho into a single heap and return the
new heap.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Heaps:
an efficient implementation of priority queues

e A tree structure with keys at the nodes.
 Max-heap: maximum key value always at the root.
 Min-heap: minimum key value always at the root.
* Note:

* No particular order on the children.

 Heaps are essentially partially ordered trees.



—xample of a (complete) binary max-heap with
node keys being integers from 1 to 100

Source: http://en.wikipedia.org/wiki/Heap (data_structure)#mediaviewer/File:Max-Heap.svg

A complete binary tree of size N has height O(log N).


http://en.wikipedia.org/wiki/Heap_(data_structure)#mediaviewer/File:Max-Heap.svg

Signature of heaps

data Heap e t = Heap {
empty :: T e,
insert :: e >t e —> t e,
findMin :: t e —> Maybe e,
deleteMin :: t e —> Maybe (t e),
merge :: te-—>te-—>1te

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A tree-based representation type
for heaps

data Tree e
= Empty
| Node e (Tree e) (Tree e)
deriving (Eq, Show)

leat e = Node e Empty Empty

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



This Is not yet ,,optimal®.

heap = Heap {
empty = Empty,
insert = \x t —> merge' (Node x Empty Empty) ft,
findMin = \t —> case t of
Empty —> Nothing
(Node x _ ) —> Just X,
deleteMin = \t —> case t of
Empty —> Nothing
(Node _ 1 r) —> Just (merge' 1 r),
merge = \l r —> case (1, r) of
(Empty, t) —> t
(t, Empty) —> t
(t1@(Node x1 11 r1), t2@(Node x2 12 r2)) —
1f x1 <= X2
then Node x1 (merge' 11 rl1) t2
else Node x2 t1 (merge' 12 r2)

L

where merge' = merge heap



Let’s make our heaps self-adjusting.

We swap arguments of merge.
These are so-called skew heaps.

heap = Heap {
empty = Empty,
insert = \x t —> merge' (Node x Empty Empty) ft,
findMin = \t —> case t of
Empty —> Nothing
(Node x _ ) —> Just X,
deleteMin = \t —> case t of
Empty —> Nothing
(Node _ 1 r) —> Just (merge' r 1),
merge = \l r —> case (1, r) of  ~—
(Empty, t) —> t
(t, Empty) —> t
(t1@(Node x1 11 rl1), t2@(Node x2 12 r2)) —
1f x1 <= x2
then Node x1 (merge' t2 rl)
else Node x2 (merge' tI rZ) 'Lf

}

where merge' = merge heap

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Merging two skew heaps

Merge interleaves the rightmost
paths of the two trees in sorted order
(on the left path), swapping the
children of nodes along the way.

Without swapping, the rightmost
path would get ,,too* long.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



A functional data structure
for skew heaps in Java

public class Skew {
public static final Skew empty = null;
public static Skew insert(int x,Skew s) { return merge(new Skew(x,null,null),s); }
public static int findMin(Skew s) { return s.elem; }
public static Skew deleteMin(Skew s) { return merge(s.left,s.right); }
public static Skew merge(Skew s,Skew t) {
if (t == null) return s;
else if (s == null) return t;
else if (s.elem < t.elem)
return new Skew(s.elem,merge(t,s.right),s.left);
else
return new Skew(t.elem,merge(s,t.right),t.left);
I3
private int elem;
private Skew left, right;
private Skew(int elem, Skew left, Skew right) {
this.elem = elem; this.left = left; this.right = right;
¥

We will need to revise this

implementation.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



The shown tree Is an
unbalanced skew heap
generated by inserting the

listed numbers.
5 6,4,6,3.6 2 6, 1,6] | -

Skew heaps are not
balanced, and individual
operations can take linear
time In the worst case.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Complexity of operation sequences

Inserting a new element such as 7 into this
unbalanced skew heap would take linear time.
However, in spite of the fact that any one
operation can be inefficient, the way that
children are regularly swapped keeps the
operations efficient ,,in average‘. Insert,
deleteMin, and merge run in logarithmic
(amortized) time.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Amortization

© 1986 Society for Industrial and Applied Mathematics

SIAM J. COMPUT.
004

Yol. 15, No. 1, February 1986

SELF-ADJUSTING HEAPS*

DANIEL DOMINIC SLEATORY AND ROBERT ENDRE TARJANT

Abstract. In this paper we explore two themes in data structure design: amortized computational
complexity and self-adjustment. We are motivated by the following observations. In most applications of
data structures, we wish to perform not just a single operation but a sequence of operations, possibly having
correlated behavior., By averaging the running time per operation over a worst-case sequence of operations,
we can sometimes obtain an overall time bound much smaller than the worst-case time per operation
multiplied by the number of operations. We call this kind of averaging amortization.

Available online: https://www.cs.cmu.edu/~sleator/papers/adjusting-heaps.pdf



https://www.cs.cmu.edu/~sleator/papers/adjusting-heaps.pdf

Persistence may break amortized bounds.

However, naively incorporating path
copying causes the logarithmic
amortized bounds to degrade to the
linear worst-case bounds.

To see this, consider repeated 1nsertion
of large elements into a tree. Each
insertion could be applied to the
original tree. Thus, each insertion
would have linear costs resulting also
in average linear costs.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Impact of laziness

If we benchmark the Haskell
implementation, we do not observe linear
behavior though! Instead, the operations
appear to retain their logarithmic
amortized bounds, even under persistent
usage. This pleasant result is a
consequence of a fortuitous interaction
between path copying and lazy
evaluation.

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



Pending merge

findMin

Under lazy evaluation, operations such as merge are not actually executed until their
results are needed. Instead, a new kind of node that we might call a pending merge
(see the diamonds) 1s automatically created. The pending merge lays dormant until
some other operation such as findMin needs to know the result. Then and only then is
the pending merge executed. The node representing the pending merge 1s overwritten
with the result so that it cannot be executed twice. (This 1s benign mutation.)

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



(a) insert 2,3,1,6,4,5,7  (b) findMin (returns 1)

Pending merges do not affect the end
results of those steps. After all the
pending merges have been executed, the
final tree 1s 1dentical to the one
produced by skew heaps without lazy
evaluation. (Printing the tree would
execute all pending nodes!) Some
functional languages allow this kind of
mutation, known as memoization,
because it 1s invisible to the user, except
in terms of efficiency.

(c) deleteMin (d) £indMin (returns 2)

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



p
public class Skew { ‘629 A7o/

private int elem;

private Skew left,right; 4225 ‘629

private boolean pendingMerge; 47 ‘CZ§

public static final Skew empty = null; Q. ’?Cy <¢

public static Skew insert(int x,Skew s) { R, 2
return merge(new Skew(x,null,null),s); ) (%4

I3
public static int findMin(Skew s) {

executePendingMerge(s);
return s.elem;
I3
public static Skew deleteMin(Skew s) {
executePendingMerge(s);
return merge(s.left,s.right);

}
public static Skew merge(Skew s,Skew t) {

if (t == null) return s;

else if (s == null) return t;

else return new Skew(s,t); // create a pending merge
I3

private Skew(int elem, Skew left, Skew right) { ... }
private Skew(Skew left,Skew right) { ... } // create a pending merge
private static void executePendingMerge(Skew s) { ... }

}

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



private Skew(int elem, Skew left, Skew right) <{

this.elem = elem;
this. left = left;
this.right = right;

pendingMerge = false;
}
private Skew(Skew left,Skew right) { // create a pending merge
this. left = left,;
this.right = right;
pendingMerge = true;
}
private static void executePendingMerge(Skew s) {
if (s !'= null && s.pendingMerge) A
Skew s1 = s.left, s2 = s.right;
executePendingMerge(sl);
executePendingMerge(s2);

if (s2.elem < sl.elem) A 7 ~

Skew tmp = s1; 42@) <<§

sl = s2; s2 = tmp; %/é 2 P@
} s.elem = sl.elem; 0O G%y
s.left = merge(s2,sl.right); 429 ‘39 ,é%%)
s.right = si.left; NN N2,
s.pendingMerge = false; S @

}
}

Source: Chapter 40: Functional Data Structures by C. Okasaki. In: Handbook of Data Structures and Applications. Chapman & Hall/CRC.



summary

Functional DS are persistent and in ,functional style”.
We |looked at stacks, sets, and heaps.

Functional and ,non“-f. DS can be equally efficient.
Lazy evaluation includes memoization.

Have a look at methods of amortized analysis!/



